ENGINEERING, BS, ENGINEERING MANAGEMENT EMPHASIS

Natural Sciences, Mathematics, and Engineering (nsme) (https://catalog.csub.edu/general-information/csub-information/school-natural-sciences-mathematics-engineering/)

Department of Physics and Engineering (https://catalog.csub.edu/general-information/csub-information/school-natural-sciences-mathematics-engineering/department-physics-engineering/)

Department Chair: Luis Cabrales Arriaga

Office: Science Building III, 308

Phone: (661)-654-2664

Email: engineering@csub.edu

www.csub.edu/engineering (http://www.csub.edu/engineering/)

Program Maps for Natural Sciences, Mathematics, and Engineering (https://programmap.csub.edu/academics/interest-clusters/4e942a6e-b8e4-4b60-a1ae-334235acc581/)

Program Description

Engineering is a broad-based general engineering degree program. As such, it provides the graduate flexibility, breadth of technical knowledge, and communication skills so important in today's rapidly changing multidisciplinary and multicultural work environment. The student may opt for a BS in Engineering with an Emphasis in Biosystems and Agricultural Engineering, Energy and Power Engineering, Engineering Management, or Petroleum Engineering by the appropriate choice of required cognate and elective courses.

The Engineering program provides a curriculum and course of training that prepares the student not only for today's challenges, but also for future ones in a fast-paced, global, and diverse society. The program emphasizes the fundamentals of engineering and modern methods, processes and technologies, and also gives the students the tools to learn by themselves and to pursue life-long learning. Furthermore, the program and the faculty strive to ensure that graduates also attain a global understanding of the environmental, ethical and societal impacts of the technologies they help develop.

The program offers opportunities for team-based design projects in collaboration with local industries and public institutions, thus preparing students for careers in for-profit and non-profit organizations, or to further their education in graduate school. Faculty members of the Department of Physics and Engineering will be pleased to advise any students who may wish to pursue this major. For student learning objectives and more information, visit our website at www.csub.edu/engineering (http://www.csub.edu/engineering/).

Course Requirements

Code	Title	Units
General Ed	ucation Requirements	
First-Year S	Seminar (FYS) ²	0

Lower Division Ar	ea A: Foundational Skills ²	6
	ea B: Natural Sciences ²	0
Lower Division Ar	ea C: Arts and Humanities	6
Lower Division Ar	ea D: Social and Behavioral Sciences ²	0
	ea E: Student Enrichment and Lifelong Learning	0
` '	ea F: Ethnic Studies	3
American Institut	ions: Government and History	6
Junior Year Divers	sity & Reflection (JYDR) ²	3
Graduation Writin	g Assessment Requirement (GWAR) ²	0
	ematic Area C and D ²	0
General Education		1
General Education	n Subtotal ²	25
Major Requiremen	nts	
Lower Division		
ENGR 1618	Introduction to Engineering I	2
ENGR 1628	Introduction to Engineering II	2
ENGR 2070	Electric Circuits	4
ENGR 2110	Analytic Mechanics, Statics	3
ENGR 2120	Analytical Mechanics, Dynamics	3
ENGR 2130	Mechanics of Materials	3
FNGR 2140	Materials Science and Engineering	4
ENGR 2350	Engineering Graphics	2
Upper Division	Engineering Grapines	
ENGR 3300	Engineering Modeling and Analysis	3
ENGR 3310	Numerical Methods and Applications in	3
ENGN 3310	Engineering	3
ENGR 3110	Thermodynamics	4
ENGR 3120	Fluid Mechanics	4
ENGR 4110	Heat Transfer	4
ENGR 4120	Machine Design	4
ENGR 4900	Senior Design Project A	2
ENGR 4910	Senior Design Project B	2
Upper Division Em	phasis Electives	
ENGR 4610	Conventional Energy Production	3
ENGR 4620	Renewable Energy Production	3
ECE 3370	Power Systems Fundamentals	4
ECE 4380	Power System Operation with Renewable Energy	3
	Resources	
Cognates Requirer	nents ¹	
CHEM 1000	Foundations of Chemistry	3
CHEM 1001	Foundations of Chemistry Laboratory	2
CHEM 1600	Foundations of Physical Chemistry	2
PHIL 3318	Professional Ethics	3
PHYS 2210	Physics for Scientists and Engineers I	4
PHYS 2220	Physics for Scientists and Engineers II	4
Calculus Cognates		
MATH 2310	Single Variable Calculus I for Engineers	4
MATH 2320	Single Variable Calculus II for Engineers	4
or MATH 2510	Single Variable Calculus I	
MATH 2520	Single Variable Calculus II	4
Additional Cognate	es: Mathematics and Science	
-	nits of the following	7
	•	

BIOL 20	010	Introductory Biology - Cells		
BIOL 21	110	Introductory Biology - Animals		
or BIOL 2120Introductory Biology - Plants				
CHEM 1	1100	Foundations of Analytical Chemistry		
CHEM 2	2200	Foundations of Inorganic Chemistry		
CHEM 2	2300	Foundations of Organic Chemistry		
or CHEM 25(Foundations of Food Science				
GEOL 2	010	Physical Geology		
GEOL 2	040	Historical Geology		
GEOL 3	000	Mineralogy and Petrology		
GEOL 3	010	Fundamentals of Geochemistry		
GEOL 3	070	Structural Geology		
GEOL 4	010	Hydrogeology		
GEOL 4	050	GIS for Natural Sciences		
GEOL 4	060	Fundamentals of Petroleum Exploration and Production		
GEOL 4	150	Applied GIS		
or GI	EOL 477	715pecial Topics in Geology 2		
PHYS 2	230	Physics for Scientists and Engineers III		
PHYS 3	010	Intermediate Laboratory in Modern Physics		
PHYS 3	510	Modern Physics		
PHYS 3	520	Scientific Computing		
PHYS 4	700	Special Topics in Physics		
or Pl	HYS 480	Research Participation		
MATH 2	2330	Multivariable and Vector Calculus for Engineers		
MATH 2	2531	Multivariable Calculus		
MATH 2	2532	Vector Calculus		
MATH 2	2533	Multivariable and Vector Calculus		
MATH 2	2540	Ordinary Differential Equations		
MATH 2	2610	Linear Algebra I		
MATH 3	3000	Mathematical Foundations		
MATH 3	3200	Probability Theory		
MATH 3	3210	Applied Statistical Computing and Multivariate Methods		
MATH 3	3300	Numerical Analysis		
MATH 4	4500	Partial Differential Equations		
Major Subt	total		99	
Additional Units Needed Towards Graduation			0	
Total			124	

Students pursuing this emphasis are encouraged to undertake a design project related to energy and power engineering, when available, in ENGR 4900 Senior Design Project A and ENGR 4910 Senior Design Project B.

² General Education Modifications (GEMS)

ENGR 1618 Introduction to Engineering I and ENGR 1628 Introduction to Engineering II satisfy the FYS requirement for entering Freshmen
The required Physics courses (PHYS 2210 Physics for Scientists and Engineers I, PHYS 2220 Physics for Scientists and Engineers II) or CHEM 1000 Foundations of Chemistry, CHEM 1001 Foundations of Chemistry Laboratory will satisfy Areas B1 and B3
Areas A3 and B2 are satisfied by completion of the major in Engineering Any of the required calculus courses (MATH 2310 Single Variable Calculus II for Engineers, or MATH 2510 Single Variable Calculus II, MATH 2520 Single Variable Calculus II) will satisfy Area B4

The SELF requirement is met by completing a LD Area B, C, or D course with a SELF component

UD Thematic Area D is satisfied by completion of the Engineering major PHIL 3318 Professional Ethics must be taken and will satisfy UD Thematic Area C